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Abstract

For very large datasets with more than a few classes, producing ground-truth data can represent a substantial, and potentially
expensive, human effort. This is particularly evident when the datasets have been collected for a particular purpose, e.g. scientific
inquiry, or by autonomous agents in novel and inaccessible environments. In these situations there is scope for the use of unsuper-
vised approaches that can model collections of images and automatically summarise their content. To this end, we present novel
hierarchical Bayesian models for image clustering, image segment clustering, and unsupervised scene understanding. The purpose
of this investigation is to highlight and compare hierarchical structures for modelling context within images based on visual data
alone. We also compare the unsupervised models with state-of-the-art supervised and weakly supervised models for image under-
standing. We show that some of the unsupervised models are competitive with the supervised and weakly supervised models on
standard datasets. Finally, we demonstrate these unsupervised models working on a large dataset containing more than one hundred
thousand images of the sea floor collected by a robot.
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1. Introduction

In many real-world applications involving the collection of
visual data, obtaining ground truth from a human expert can
be very costly or even infeasible. For example, remote au-
tonomous agents operating in novel environments like extra-
planetary rovers and autonomous underwater vehicles (AUVs)
are very effective at collecting huge quantities of visual data.
Sending all of this data back to human operators quickly is hard
since communication is usually bandwidth limited. In these
situations it may be desirable to have algorithms operating on
these vehicles that can summarise the data in unsupervised but
semantically meaningful ways.

Similarly, many scientific datasets may contain terabytes of
visual data that require expert knowledge to label it in a man-
ner which is suitable for scientific inference. Obtaining such
knowledge for large datasets can be a large drain on research
resources. Again, it would be desirable to have algorithms that
can separate this data automatically and in semantically mean-
ingful ways, so the attention of the domain experts can be fo-
cused on subsets of the visual data for further labelling. In sec-
tion 6 we present a large visual dataset collected by an AUV
that exhibits exactly this problem.

Recently there has been much focus on the computer vision
problem of scene understanding, whereby multiple sources of
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information and various contextual relationships are used to
create holistic scene models. Typically the aim in scene un-
derstanding is to improve scene recognition tasks while taking
advantage of scene labels or annotations [1–4], accompanying
caption or body text [5], or even contextual relationships be-
tween image labels and low-level visual features [6, 7]. Most
of these approaches are weakly supervised, semi-supervised or
supervised in nature, and not much attention has been given to
fully unsupervised, visual-data only holistic scene understand-
ing.

In this article we wish to explore how unsupervised, or
visual-data only, techniques can be applied to the problem of
scene understanding. To this end we experiment with well es-
tablished unsupervised models for clustering, such as Bayesian
mixture models [8] and latent Dirichlet allocation [9]. These
models cluster coarse whole-image descriptors, or cluster in-
dividual parts of images (but not simultaneously). We also
explore models that can cluster data on multiple levels simul-
taneously (e.g. image segments or parts, and images), which
are similar to the models presented in [4, 10]. These models
discover the relationships between objects in images, and then
define scene types as distributions of these objects. Also, by
knowing the scene type, contextual information is used to aid in
finding objects within scenes. Finally we present a new model
that can cluster multiple sources of visual information, such as
segment and image descriptors. This model takes advantage of
holistic image descriptors, which may encode spatial layout, as
well as modelling scene types as distributions of objects.

All of these models are compared on standard computer vi-
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sion datasets as well as a large AUV dataset for scene and ob-
ject discovery. Emphasis is placed on scene category discovery,
since we compare these unsupervised methods to state-of-the-
art weakly-, semi- and supervised techniques for scene under-
standing. We also compare these models for object discovery
in two of the experiments.

In the next section we review the most relevant literature to
place this work in context. We then present the hierarchical
Bayesian models we use for unsupervised scene understanding
in section 3 and in section 4 we present variational Bayes al-
gorithms for learning these models. In section 5 we describe
the image and image-segment descriptors we use, since these
play a large part in the performance of these purely visual-data
driven models. Then in section 6 we empirically compare all of
the aforementioned models, and summarise our results in sec-
tion 7.

2. Relevant Literature

Visual context, such as the spatial structure of images, and
position and co-occurrence of objects within scenes provide se-
mantic information that aids object and scene recognition in our
visual cortex [11, 12]. Similarly, semantic information about
images can be derived from the volumes of textual data that
accompanies these images in the form of tags, captions and
paragraph text on the Internet. Consequently, there has recently
been a lot of research focusing on holistic image “understand-
ing”, where these sources of information are fused in order to
improve scene and object recognition tasks.

An early attempt at combining annotation information with
scene modelling proposed in [1] extends latent Dirichlet allo-
cation (LDA) [9] to use both visual and textual data for in-
ferring image tags in untagged images. This is essentially a
“weak” form of supervision, where the exact image classes are
unknown, but some semantically relevant information is still
used in training the model. Subsequent research, [2–4, 13–15]
(amongst others) present hierarchical Bayesian models that can
simultaneously classify scenes and recognise objects. These
models can be supervised at the scene level, object level, or
both. They can also use “weak” labels, or annotations, at the
image or object levels [2–4]. Typically the features used to rep-
resent each image in these models are the proportions of super-
pixel clusters (objects) contained within the images. The super-
pixels are usually described by a combination of bag-of-words
(BoW) features, such as quantised SIFT descriptors and quan-
tised attributes like colour, texture and shape.

Li et al. [3] present a hierarchical Bayesian model that has a
principled way of dealing with “noisy” or irrelevant object tags.
Essentially a trade off is made between the model’s certainty of
the distribution of tags that correspond to a visual object class,
and the distribution of tags that are irrelevant to the current ob-
ject class. If an object class has a strong associated posterior
distribution over the corresponding tags, a new tag that has low
likelihood under this posterior is likely to be declared as irrel-
evant by an indicator variable. This model can also infer tags
for images when they are missing. Quite a different approach
to modelling textual and visual information is presented in [5].

They use a kernel canonical correlation analysis model (CCA)
that attempts to learn the latent subspace that connects visual
features with unaligned text (e.g. web pages with images). They
then use this learned subspace for scene classification tasks.

Fei-Fei and Li [16] also present a model where the scene
and object levels are classified in the same framework, but are
linked through a higher “event” level, such as a particular sport-
ing event. For example, the objects in an image may be a per-
son, skis etc., and the scene may be of a snowy mountain. Natu-
rally, these are both related to a “skiing” event, which is simul-
taneously inferred. These higher level contextual relationships
were shown to aid image classification. Similarly, it has been
found in works such as [17, 18] that knowledge of scene-type
context can aid object recognition. In [17] the authors use a hid-
den Markov model (HMM) to classify a scene, and give certain
objects a-priori more probability of being detected conditioned
on the scene type. For example, it is more likely you would find
a coffee machine in a kitchen. Similarly, certain objects com-
monly co-occur, and so detection of one object (street) may be
used to aid detection of another object (building), as demon-
strated by [19]. They use tree-like models to infer the contex-
tual and spatial relationships of, and between, labelled objects
to aid inference in unlabelled test sets. It is worth noting at this
juncture that while object discovery can be an important part
of scene understanding, emphasis has usually been placed on
scene recognition in the scene understanding literature. Object
recognition and discovery performance is usually presented in a
qualitative fashion. Conversely, scene recognition is not given
much attention in the object recognition and discovery litera-
ture, which focuses on quantitative measures of recognition and
object purity.

Many models for scene understanding explicitly model the
spatial layout of scenes [14, 15, 19, 20], or may make use of
non-parametric processes or random fields to enforce segment-
label contiguity [4, 21–24]. In [14] the authors present a su-
pervised model, the context-aware topic model (CA-TM), that
is similar to hierarchical Bayesian models like [13], but it also
learns the absolute (as opposed to relative) position of objects
within a scene type. For example, it learns that sky objects are
at the top, and buildings are at the sides, of street scenes etc.
Hence it takes advantage of both scene and spatial context for
classification and object recognition. It can be both supervised
at the scene and, optionally, at the object level. A model with
a similar concept is presented in [20], however their emphasis
is on object detection/discovery rather than scene recognition.
The models presented in this article do not explicitly model
scene spatial layout, however, the image descriptors used en-
code this information, see section 5 for details.

Recently [6] combined Beta-process sparse-code dictionary
learning, topic modelling and image classification in one gen-
erative framework. Essentially this framework models images
from the pixel level to scene level. This is quite an impressive
feat, and results in a very complex model. This model can also
be used for unsupervised image clustering, but not necessarily
object detection/segmentation. It can also use image annota-
tions where available. While the classification results are im-
pressive, each iteration of learning (Gibbs sampling) takes on

2



the order of minutes, when it is usually milliseconds or sec-
onds for other models. A similar concept is presented in [7],
however they use a Bayesian co-clustering framework to incor-
porate semantic knowledge from image labels for visual dictio-
nary learning. They can directly relate image features to seman-
tic concepts, and show better performance than [6].

Scene understanding is a very active area of research, how-
ever much of the literature is concerned with weakly super-
vised, semi-supervised (a few strong labels) or supervised ap-
proaches to image understanding. Some of the aforementioned
models can be used in a fully unsupervised, visual data only
setting, though they may operate in a reduced capacity. For
instance, the model in [13] loses its ability to perform scene
recognition/discovery and reverts to just clustering segments
when image labels are not present. Also [4] and [6] can be
used as unsupervised models when no annotation data is avail-
able, however they were not rigorously tested in such situations.
The only publication, to the authors’ knowledge, that presents a
model exclusively designed for unsupervised scene understand-
ing is [25]. This model is also reviewed and used for compari-
son in this work.

There has been more work on unsupervised object discovery,
where scene recognition/discovery is not an important consider-
ation. For instance [26] and [20] cluster segments from multiple
image segmentations in order to find the “purest” instances of
objects. Though [20] can also make use of object spatial lay-
out, and labelled categories where available, which is a similar
approach taken by [27]. A comprehensive review of clustering
models such as K-means and spectral clustering, and topic mod-
els such as LDA and non-negative matrix factorisation (NMF)
applied to object discovery is provided in [28]. They test these
models on single and multiple object per image tasks, and with
different BoW feature normalisations. Similarly, there has been
much work on unsupervised scene discovery, where typically
whole-scene descriptors are used without explicitly modelling
image parts [29–31].

From the aforementioned literature it is apparent that per-
formance for scene and object recognition can be greatly in-
creased by taking advantage of joint scene and object contex-
tual cues. However, it is also apparent that not much attention
has been given to achieving holistic scene understanding in a
completely unsupervised manner. The work presented in this
article reviews and introduces various approaches for a more
fully-fledged unsupervised scene understanding framework in
the absence of any annotations or related textual information.

3. Bayesian models for Unsupervised Scene Understanding

In this section we present and discuss the structure of a num-
ber of hierarchical Bayesian models of increasing complex-
ity that we apply to unsupervised scene understanding tasks.
We start with Bayesian Gaussian mixture models (BGMMs)
[8, 32] and latent Dirichlet allocation [9], but with Gaussian
clusters or topics (G-LDA), for scene or segment clustering. We
then present two novel models for simultaneous image and seg-
ment clustering. The first is the simultaneous clustering model
(SCM), which is similar to the models presented in [4] and [10].

The second is the multiple-source clustering model (MCM) that
can cluster both image and segment descriptors.

3.1. Bayesian Gaussian Mixture Models

We will present BGMMs in the context of clustering images,
but these models can equally be applied to clustering segments.

Firstly, a BGMM assumes all images in a dataset, W =
{wi}Ii=1 where wi ∈ RDim , are drawn from a weighted sum
of T Gaussian distributions;

wi ∼
T∑
t=1

πtN
(
wi|ηt,Ψ

-1
t

)
. (1)

Here π = {πt}Tt=1 are the mixture weights, where πt ∈ [0, 1]

and
∑T
t=1 πt = 1. Also, ηt and Ψt are the means and inverse

covariances (precisions) for each Gaussian cluster respectively.
An auxiliary indicator variable is also introduced, Y =

{yi}Ii=1 where yi ∈ {1, . . . , T}, which assigns each observa-
tion to a Gaussian component according to the following con-
ditional relationship;

wi|yi ∼
T∏
t=1

N
(
wi|ηt,Ψ

-1
t

)1[yi=t]
. (2)

Here 1[·] is an indicator function that evaluates to 1 if the ex-
pression in the brackets is true, or 0 otherwise. The yi are dis-
tributed according to a Categorical distribution,

yi ∼ Categ(π) =

T∏
t=1

π
1[yi=t]
t . (3)

Because this is a Bayesian model, prior distributions are placed
on all of the model parameters as well,

π ∼ Dir(α) , (4)

ηt ∼ N
(
h, (δΨt)

-1
)
, (5)

Ψt ∼ W(Φ, ξ) , (6)

where W(·) is a Wishart distribution, and only a single scalar
parameter is given to the Dirichlet distribution as shorthand for
a symmetric Dirichlet prior.

The following describes the generative process of the
Bayesian Gaussian Mixture model:

1. Draw T cluster parameters ηt and Ψt from (5) and (6)
respectively.

2. Draw mixture weights π ∼ Dir(α).

3. For each image, i ∈ {1, . . . , I}:

(a) Choose an image cluster yi ∼ Categ(π).

(b) Draw an observation from the chosen cluster
wi| (yi = t) ∼ N (ηt,Ψt).
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Figure 1: Graphical models of (a) a Bayesian Gaussian mixture model (BGMM), and (b) Gaussian latent Dirichlet allocation (G-LDA). Circles denote random
variables, shaded circles are observable random variables. The plates denote replication of encompassed entities, and the points represent point estimates of the
model hyper-parameters.

The graphical model of this process is shown in Figure 1. The
actual (posterior) hyper-parameters (α̃t, h̃t, etc.), number of
clusters (T ), and indicator assignments (yi) are learned using
variational Bayes [8], which is discussed in section 4.

There exist generalisations of this BGMM where T →∞ us-
ing a Dirichlet process instead of a symmetric Dirichlet over the
mixture weights [33]. Such a model is the variational Dirichlet
Process (VDP) presented in [32]. We will not describe such a
model here, however we do use the VDP in the experiments in
section 6. We have found that the variational Bayes realisation
of the VDP and BGMM yield very similar results.

The BGMM and VDP do not take advantage of any contex-
tual or structural information when applied to clustering images
or segments. They simply cluster images or segments as if they
were all in one “bag”. We use the BGMM/VDP as baseline
Bayesian unsupervised methods for comparison to other, more
sophisticated methods.

3.2. Gaussian Latent Dirichlet Allocation

Latent Dirichlet allocation (LDA) [9] was originally formu-
lated for modelling text, and typically has a Multinomial or Cat-
egorical cluster (topic) distribution. Because the image and seg-
ment descriptors we have used in this article are best modelled
with Gaussian clusters, we now present a version of smoothed
LDA with Gaussian clusters (G-LDA).

Using again the application of clustering images, G-LDA as-
sumes data originates in J distinct groups or photo albums,
W = {Wj}Jj=1 (these groups are known as “documents” in
the text modelling literature). Each of these albums contains
Ij images, Wj = {wji}Iji=1. Also, the mixture weights are
specific to each group, {πj}Jj=1, but the clusters are shared be-
tween all groups,

wji ∼
T∑
t=1

πjtN
(
wji|ηt,Ψ

-1
t

)
. (7)

The differences between G-LDA and the BGMM are perhaps
illustrated more clearly in Figure 1, and by the following gen-
erative process:

1. Draw T cluster parameters ηt and Ψt from (5) and (6)
respectively.

2. For each group or album, j ∈ {1, . . . , J}:

(a) Draw mixture weights πj ∼ Dir(α).

(b) For each image, i ∈ {1, . . . , Ij}:

i. Choose an image cluster yji ∼ Categ(πj).
ii. Draw an observation from the chosen cluster

wji| (yji = t) ∼ N (ηt,Ψt).

G-LDA is quite similar to the BGMM except that is has mix-
ture weights specific to each group or album. So each album
of images has a specific proportion of scene-types (image clus-
ters). Alternatively, if we used this model to cluster image seg-
ments, then each image would be described as a particular pro-
portion of objects (segment-clusters). Hence, G-LDA models
album context for image clustering, and image context when
applied to segment clustering.

Generalisations of LDA to T → ∞ also exist, such as the
hierarchical Dirichlet process (HDP) [34]. These models typ-
ically aid in the selection of T because of the hierarchical na-
ture of the prior used. However, we have found this not to be
an issue with G-LDA because of the heavy complexity penal-
ties introduced by the Gaussian cluster priors (see section 4 and
Appendix A). Hence, we have elected to stay with the more
simple, conjugate LDA-based model for this article.

Most standard computer vision datasets are not divided into
photo albums, and so in section 6 we mostly use G-LDA for
clustering segments. However, the AUV dataset is comprised
of multiple surveys, which we do use as albums.
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3.3. Simultaneous Clustering Model

Now we present the novel simultaneous clustering model
(SCM), which can simultaneously cluster image segments and
images unlike the BGMM and G-LDA. Like G-LDA, the SCM
models albums j, but does not explicitly model image descrip-
tors (wji). Instead it models images as distributions of objects,
or segment-clusters. This is a “bag-of-segments” representation
since the layout, or order, of the segments in the image is not
modelled.

Each image is comprised of Nji non-overlapping segments,
Xji = {xjin}Njin=1 where xjin ∈ RDseg , which are drawn from
a mixture of K Gaussians or “object” types. The segment clus-
ter weights βt = {βt1, . . . , βtK} are specific to each scene-
type, t, as opposed to each image in the case of G-LDA;

SCM : xjin| (yji = t) ∼
K∑
k=1

βtkN
(
xjin|µk,Λ

-1
k

)
, (8)

G-LDA : xjin ∼
K∑
k=1

βikN
(
xjin|µk,Λ

-1
k

)
. (9)

So where G-LDA models segments as a Gaussian mixture spe-
cific to each image, i, the SCM models segments as a Gaussian
mixture specific to a scene type or cluster of images, t. Like
in the BGMM, an indicator variable for each segment obser-
vation, zjin ∈ {1, . . . ,K}, is used to assign the observation
to a segment-cluster (object-type). This indicator variable also
has a Categorical distribution, but is conditioned on the scene
indicator,

zjin|yji ∼
T∏
t=1

Categ(zjin|βt)
1[yji=t] , (10)

note how this is similar to (2). Consequently, each image is
described as a set of object types, Zji = {zjin}Njin=1, which
is inherently a Multinomial distribution. This means that each
scene-type, t, will have its own unique distribution of objects,
βt. The BGMM and G-LDA represent a scene-type as a Gaus-
sian cluster, whereas the SCM represents a scene-type as a
Multinomial cluster.

All the SCM parameters have prior distributions;

πj ∼ GDir(a, b) , (11)
βt ∼ Dir(θ) , (12)

µk ∼ N
(
m, (γΛk)

-1
)
, (13)

Λk ∼ W(Ω, ρ) . (14)

We have chosen to use a generalised Dirichlet distribution,
GDir(·), [35, 36] over the scene-type mixture weights. It can
be represented as a truncated stick breaking process, which is
also used to approximate a Dirichlet process [37],

πjt = vjt

t−1∏
s=1

(1−vjs), vjt ∼

{
Beta(a, b) if t < T

1 if t = T.
(15)

where vjt ∈ [0, 1] are “stick-lengths” for each album. Here we
have also elected to just choose a scalar value for the hyper-
parameters a and b, like in the case of the symmetric Dirich-
let. We use a generalised Dirichlet for the SCM because it is
a heavier prior (has twice the number of parameters) than the
symmetric Dirichlet. This helps variational Bayes select an ap-
propriate number of scene types, T , when using a Multinomial
scene-type representation. This is similar in concept to using
a HDP, but without the complexity. This modelling choice is
explored empirically in section 6.

The entire generative model of the SCM is represented in
Figure 2, and is given below;

1. Draw T image cluster parameters βt from (12).

2. Draw K segment cluster parameters µk and Λk from (13)
and (14) respectively.

3. For each group or album, j ∈ {1, . . . , J}:

(a) Draw mixture weights πj ∼ GDir(a, b).

(b) For each image, i ∈ {1, . . . , Ij}:
i. Choose an image cluster yji ∼ Categ(πj).

ii. For each image segment n ∈ {1, . . . , Nji}:
A. Choose a segment cluster zjin| (yji = t) ∼

Categ(βt).
B. Draw an observation from the segment clus-

ter xjin| (zjin = k) ∼ N (µk,Λk).

The SCM is similar in some ways to the model presented
in [4], for instance it represents an image as a distribution of ob-
ject types. However, the SCM retains the image-album context
of G-LDA (when the latter is applied to clustering images). The
SCM models segments as having scene-type context, i.e. a tree
is more likely to appear in a forest scene than an indoor scene.
This is unlike G-LDA (when applied to segments), which only
models segments as having specific image context. Hence the
SCM has better object co-occurrence modelling facility than
G-LDA. Distributions of objects are captured at the scene-type
level, βt, which involves many images, as opposed to just the
single image level, βi.

3.4. Multiple-source Clustering Model

The final model we present in this article is the multiple-
source clustering model (MCM). This model has also been pre-
sented in [25]. It essentially combines the SCM segment repre-
sentation with the image-level representation of G-LDA.

Like the SCM, the MCM models segments, xjin, as a scene-
type specific mixture of Gaussians, βt. But unlike the SCM,
the MCM also models image descriptors, wji, as a group spe-
cific mixture of Gaussians, like image-level G-LDA. So now
scene clusters, or types, are represented by both the proportions
of objects (segment clusters) within them, βt, and a Gaussian
component that describes the overall scene appearance, param-
eterised by ηt and Ψt.

The difference between the SCM and the MCM can be visu-
alised by the graphical models in Figure 2. We also illustrate
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Figure 2: Graphical models of (a) the simultateous clustering model (SCM), and (b) the multiple-source clustering model (MCM).

how images are modelled under the SCM and MCM in Fig-
ure 3. The generative process of the MCM is;

1. Draw T image cluster parameters βt, ηt and Ψt from (12),
(5) and (6) respectively

2. Draw K segment cluster parameters µk and Λk from (13)
and (14) respectively.

3. For each group or album, j ∈ {1, . . . , J}:

(a) Draw mixture weights πj ∼ GDir(a, b).

(b) For each image, i ∈ {1, . . . , Ij}:
i. Choose an image cluster yji ∼ Categ(πj).

ii. Draw an image observation from the chosen im-
age cluster wji| (yji = t) ∼ N (ηt,Ψt).

iii. For each image segment n ∈ {1, . . . , Nji}:
A. Choose a segment cluster zjin| (yji = t) ∼

Categ(βt).
B. Draw a segment observation from the

segment cluster xjin| (zjin = k) ∼
N (µk,Λk).

The type of context that the MCM models is similar to the
SCM. The only real difference being that scene types have
a joint Multinomial-Gaussian representation. This allows the
MCM to more effectively model global scene attributes that
may not be captured by just object co-occurrence. For instance,
the image descriptors introduced in section 5 capture the coarse
spatial structure of an image.

4. Variational Inference for the SCM and MCM

In this section variational Bayes inference algorithms are de-
rived for learning the posterior latent variables of the SCM and
MCM, i.e., posterior hyper-parameters, labels, and number of
clusters. We do not present the variational Bayes algorithms
for the BGMM, VDP or G-LDA since these can be found in
[8, 32, 38, 39]. Also, many of the updates are similar between
these models.

Typically, to learn the posterior latent variables of the types
of Bayesian models presented in the previous section, the mod-
els’ log-marginal likelihood is maximised with respect to the
set of model hyper-parameters, Ξ. The log-marginal likelihood
takes the general form:

log p(X|Ξ) = log

∫
p(X,Z,Θ|Ξ) dZ dΘ, (16)

where X are observable, Z are latent indicators, and Θ are the
set of model parameters. This integral is intractable in the case
of all of the presented models, and so an approximation of this
marginal log-likelihood is usually made. In the case of varia-
tional Bayes, this approximation is called free energy, F . The
approximation starts by representing the posterior distribution
of the model latent variables with a set of factored distributions:

p(Z,Θ|X,Ξ) ≈ q(Z) q(Θ) . (17)

By optimising the free energy functional F [q(Z) , q(Θ)], the
Kullback-Leibler divergence, KL[p‖q], is minimised between
the approximation and the true posterior. This optimisation

6



Groups/Albums
Segment feature spaces for each image

Segments, or 
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Figure 3: Demonstration of how the MCM clusters multiple observation sources in groups. The coloured points (cyan, yellow, magenta) in each coloured square
represent an image’s segment descriptors, xjin, in segment descriptor feature space. Segment descriptors are clustered into object-types (cyan ≈ plant, magenta ≈
water and yellow ≈ sky), and are shared between images and groups. Similar images will have a similar distribution of these object-types, βt. These proportions
are denoted by the pie charts with the coloured borders. The coloured points (red, green, blue) in the black squares represent the image descriptors, wji, in image
descriptor feature space. Each black square represents all of the images in a group/album. The coloured squares correspond to the red, green and blue points in the
black squares, symbolising that both an image descriptor and proportions of object-types within an image describe each image. Groups can likewise be described
by the proportions of image clusters within them, πj . The SCM is the same as this depiction, but does not make use of wji.

typically results in an expectation maximisation-like algorithm
[40] that alternates between finding the expected distribution
(or assignments) for the indicators, q(Z), and the optimum
value of the variational posterior hyper-parameters, Ξ̃, that gov-
ern q(Θ). The expectation and maximisation steps are alter-
nated until F converges. For more information on this general
variational Bayes algorithm see [38, 40]. Also, for the exact
form of F for the SCM and MCM see Appendix A.

4.1. Simultaneous Clustering Model
Applying the variational Bayes learning algorithm to the

SCM yields the following expectation step for the segment in-
dicators, Z,

q(zjin = k) =
1

Zzjin
exp

{ T∑
t=1

q(yij = t)Eqβ [log βtk]

+ Eqµ,Λ
[
logN

(
xjin|µk,Λ

-1
k

)]}
. (18)

Here Zzjin is a normalisation constant which is straight-
forwardly computed from the sum over k of the un-normalised
components of (18). Also, Eq[·] denotes the expectation with
respect to the variational distribution, q(·). These expectations
are given in Appendix B. In (18) the term with the sum over the
weighted image label probabilities, q(yjin = t), assigns more
or less likelihood of the current segment observation belonging
to the segment cluster based on the probability of the image be-
longing to a scene-type, t. For example, if the image is of a
forest type, then the current object is more likely to be a tree
trunk than a building. This is how scene-type context is mod-
elled for objects.

Similarly, the following expectation step is obtained for the
image indicators, Y,

q(yji = t) =
1

Zyji
exp

{
Eqπ [log πjt]

+

K∑
k=1

Eqβ [log βtk]

Nji∑
n=1

q(zjin = k)

}
. (19)

Again, Zyji is simply calculated by summing the un-
normalised components over t, and the expectations are given
in Appendix B. From (19) we can see that an image is assigned
to a scene-type, t, by the number and co-occurrence of ob-
ject types within it. This is indicated by the term containing
sums over q(zjin = k), which is essentially a Multinomial log-
likelihood.

Optimising F for the parameters of the SCM leads to the
following variational posterior updates for the mixture weights,
πj , and image cluster parameters, βt;

ãjt = a+

Ij∑
i=1

q(yji = t) ,

b̃jt = b+

Ij∑
i=1

T∑
s=t+1

q(yji = s) ,

θ̃tk = θ +

J∑
j=1

Ij∑
i=1

q(yji = t)

Nji∑
n=1

q(zjin = k) . (20)

These updates are essentially just the prior with added obser-
vation counts, or sufficient statistics. The sum for b̃jt in (20)
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must be performed in descending cluster size order, as per [32].
The variational posterior Gaussian-Wishart hyper-parameters
for the segment clusters are,

γ̃k = γ +Nk,

m̃k =
1

γ̃k
(γm +Nkx̄k) ,

ρ̃k = ρ+Nk,

Ω̃
-1
k = Ω-1 +NkRk +

γNk
γ̃k

(x̄k −m)(x̄k −m)
>
, (21)

where,

Nk =

J∑
j=1

Ij∑
i=1

Nji∑
n=1

q(zjin = k) ,

x̄k =
1

Nk

J∑
j=1

Ij∑
i=1

Nji∑
n=1

q(zjin = k) xjin, (22)

Rk =
1

Nk

J∑
j=1

Ij∑
i=1

Nji∑
n=1

q(zjin = k) (xjin − x̄k)(xjin − x̄k)
>
.

The expectation steps (18) and (19) and the maximization
steps (21) are alternated until F for the SCM converges. F
is given in Appendix A.

4.2. Multiple-source Clustering Model

Since the MCM is similar to the SCM, apart from the im-
age observation model, many of the variational updates are the
same. The image indicator, Y, updates have a different form
because of the image observations,

q(yji = t) =
1

Zyji
exp

{
Eqπ [log πjt]

+

K∑
k=1

Eqβ [log βtk]

Nji∑
n=1

q(zjin = k)

+ Eqη,Ψ
[
logN

(
wji|ηt,Ψ

-1
t

)]}
. (23)

This equation has the same general form as (19), but with an
added Gaussian log-likelihood term corresponding to the image
descriptors, wji.

The maximisation steps for the model parameters are also the
same as the MCM apart from those for the Gaussian-Wishart
prior over the image observation, wji, clusters. However, these
update equations are the same as those in (21), though the sums
in (22) are only over j and i, and involve the image indica-
tors, yji.

4.3. Split-tally Model Selection Heuristic

If the number of clusters, T and K, is known a-priori or set
to some large value, the label and posterior hyper-parameter up-
dates can simply be iterated until F converges to a local max-
imum. Some of the clusters will not accrue any observations

because of the variational Bayes complexity penalties that nat-
urally arise in F . We have found that better clustering results
can be obtained if we guide the search for the segment clusters.

The segment-cluster search heuristic we use is a much faster,
greedy version of the exhaustive heuristic presented in [32].
The SCM and MCM start with K = 1 segment cluster, and
iterate until convergence. Then the segment cluster is split in
a direction perpendicular to its principal axis. The two result-
ing clusters are then refined by running variational Bayes over
them for a limited number of iterations (we use a maximum
of 15). F is estimated with this newly proposed split, and if
it has increased in value, the split is accepted and the whole
model is again iterated until convergence. Otherwise, the al-
gorithm terminates. The exhaustive heuristic proceeds by tri-
alling every possible cluster split between each model conver-
gence stage, and only accepts the split that maximisesF . When
K becomes large, this search heuristic becomes the dominant
computational cost of the whole inference algorithm.

In our greedy “split-tally” heuristic, we guess which clus-
ter to split first by ranking all clusters’ approximate contribu-
tion to F (details in Appendix C). Also, a tally is kept of how
many times a cluster has previously failed a split trial. Clus-
ters that have not yet failed splits are prioritised for splitting.
The first cluster split to increase F is accepted, and the tally
for the original cluster is reset. All clusters must eventually
fail to be split for the algorithm to terminate. We have found
this split-tally heuristic greatly reduces run-time, without sig-
nificantly impacting performance, mostly because of the tally.
To our knowledge, this is the first time a tally has been used in
such a heuristic. A similar heuristic was also trialled to search
for T in the MCM, however we found that it was better to ran-
domly initialise it to some large value, Ttrunc > T , since both
heuristics would interact. Also, there is no intuitive way to split
the purely Multinomial image clusters of the SCM, so it is also
randomly initialised.

We also use this split-tally heuristic for searching for the
number of clusters in the VDP and G-LDA, when applied to
image or segment clustering, in section 6.

4.4. Model Priors
Because all of the aforementioned models are Bayesian we

need to choose priors in the form of initial hyper-parameter val-
ues. These priors are then updated as evidence is presented to
the learning algorithm. By prioritising simplicity, we have cho-
sen the following values for the prior hyper-parameters;

α, a, b, θ, γ, δ = 1,

ρ = Dseg,

ξ = Dim,

m = mean(X),

h = mean(W),

Ω = (ρCw,s)
-1IDseg

,

Φ = (ξCw,iλ
max
cov(W))

-1IDim
. (24)

The values for the first three equations in (24) have been chosen
to be their minimum integer value in the support of their respec-
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tive distributions. We have found that apart from θ, changing
these values only has a minor affect on the posterior clusters.
For the SCM in section 6 we do vary the value of θ.

The prior parameter, θ, essentially controls how many differ-
ent objects (segment clusters) we expect to be in a particular
scene-type a-priori. For low values of θ, we would expect only
a few objects within each scene-type, i.e. we expect zjin to only
take a few values of k for a particular scene-type, t. Therefore
more image clusters may be required to represent all possible
object-types, k, since only a few can exist in a scene-type. We
would expect the opposite to occur for high values of θ.

The Wishart matrix priors in the last two equations of (24)
are just scaled identity matrices. This has the effect of making
the algorithms expect isotropic Gaussian clusters in the data a-
priori. Also λmax

cov(W) is the largest Eigenvalue of the covariance
of the image descriptors. This value is not used for the seg-
ment descriptors since they are whitened, see section 5. Cw,i
and Cw,s (i for image, s for segment) are tunable parameters
that encode the a-priori “width” of the isotropic clusters. These
tuning parameters were found to have the largest effect on the
number of (Gaussian) clusters found by the algorithms. In sec-
tion 6 we will show clustering performance with varying θ,
Cw,i and Cw,s.

5. Image Representation

The aforementioned algorithms rely on highly discriminative
visual descriptors since they are driven by visual-data alone.
We have chosen unsupervised feature learning algorithms for
this task as they are easily implemented and have excellent per-
formance in a number of scene recognition tasks, e.g. [41].

5.1. Image Descriptors

We use a modified sparse coding spatial pyramid matching
(ScSPM) [41] method to encode the image descriptors wji.
Figure 4 (a) demonstrates how these image descriptors are
created. For all experiments we use the original 1024-base
Caltech-101 dictionary supplied by [41] to encode dense 16×16
pixel SIFT patches with a stride of 8 pixels. We have found lit-
tle to no reduction in classification and clustering performance
using this pre-learned dictionary as compared to learning dic-
tionaries for each specific dataset. This is similar to the obser-
vation made in [42].

We use orthogonal matching pursuit (OMP) with 10 activa-
tions in place of the original sparse coding encoding method
used in [41] for the larger AUV dataset. It is much less compu-
tationally demanding and does not affect scene clustering per-
formance greatly. We use the original pyramid with a [1,2,4]
pooling region configuration, which leads to a 21,504 dimen-
sional (sparse) code for each image. This is far too large to use
with a Gaussian cluster model, but we have found that these
codes are highly compressible with (randomised) PCA. Typi-
cally we can compress them to Dim = 20 while still achieving
excellent image clustering performance.

5.2. Segment Descriptors

Out of the many segment descriptors tried, it was found
that pooling dense independent component analysis (ICA) [43]
codes within segments gave the best results. The following pro-
cedure was used to create a descriptor for each segment within
an image:

1. Extract square patches centred on every pixel in the image.

2. (Optional) remove the DC offset, and contrast normalise
the patches.

3. Use a random subset of all of the patches in the dataset to
train an ICA dictionary, D, and its pseudo-inverse, D+.

4. Use D+ to create a code (or filter response), al, for all of
the patches. This is a fast matrix multiplication operation,
so is feasible for patches centred on every pixel, l ∈ [1, L],
in an image. L is the total number of pixels in an image.

5. Over-segment the image, obtaining sets of pixels Sjin.
The results presented here used a fast mean-shift segmen-
tation method [44].

6. Obtain segment descriptors by mean pooling all of the ICA
dictionary responses in a segment in the following manner:

x̃jin =
1

#Sjin

∑
l∈Sjin

log |al| (25)

These transformations greatly improved segment cluster-
ing performance. We conjecture that the absolute value
makes the descriptors invariant to 90 degree phase shifts in
rl. The logarithm transforms the range back to (−∞,∞).

7. Obtain the final segment descriptors, xjin, by PCA
whitening all the x̃jin. We perform dimensionality reduc-
tion as part of this whitening stage, to Dseg = 15, which
preserves more than 90% of the spectral power.

This process is graphically demonstrated in Figure 4 (b).
A bag-of-words representation was not chosen for the seg-

ments as it would require a Multinomial cluster distribution
as opposed to Gaussian. We found this representation to be
less powerful for model selection in this unsupervised appli-
cation (this is demonstrated in section 6 at the image level).
We have chosen to leave a comprehensive comparison between
these ICA-based features and bag-of-words features for object
detection as future work. However, we do compare the image
ScSPM representation against a bag-of-words image represen-
tation for use in spectral clustering in Table 1, where we can
observe tangible benefits. Naturally, the performance of these
algorithms is largely influenced by the representation chosen.

Both the image and segment descriptors take about 1 second
each per image to calculate. The ScSPM and ICA features are
complementary; the ScSPM descriptors encode the spatial lay-
out and structural information of an image (the “gist”), whereas
the ICA features encode fine-grained colour and texture infor-
mation.
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Spatial Pyramid Pooling

Learned

Dictionary

Sparse Codes

SIFT Descriptors

Final Descriptor

(a) ScSPM image descriptors

ICA dictionary D, 
B elements

B response images

Multiply D+ with image
patches, using a 1px stride

Pooling of ICA responses
in image superpixel regions

Pooled descriptors for 
each superpixel

PCA-whitened descriptors

Superpixel
regions

(b) ICA segment descriptors

Figure 4: (a) The sparse code spatial pyramid matching [41] image descriptors, and (b) the independent component analysis based segment descriptors. See text for
details.

6. Experiments

In this section we compare the VDP, G-LDA, SCM and
MCM in image and segment clustering tasks. We also compare
to other unsupervised, weakly-supervised, semi-supervised and
supervised algorithms in the literature for scene understand-
ing/recognition. For this comparison we use three standard
datasets (single album) and a large novel dataset consisting of
twelve surveys (albums) from an autonomous underwater ve-
hicle (AUV). We also explore whether a symmetric Dirichlet
prior over group weights, πj , has an effect on clustering results
for the SCM and MCM. Finally we explore whether modelling
groups improves clustering performance on the AUV dataset.

Normalised mutual information (NMI) [45] is used to com-
pare the clustering results to the ground truth image and seg-
ment labels. This is a fairly common measure in the clustering
literature as it permits performance to be compared in situations
where the number of ground truth classes and clusters are dif-
ferent. All results cited have been transformed into NMI scores
from the confusion matrices given in their corresponding pa-
pers. This conversion is straight forward as long as the number
of images used for testing within each class is known.

We also estimate the mean accuracy for the clustering results
when benchmarking against supervised algorithms. This is
done using the contingency table used to calculate NMI, which
is just a table with the number of rows equalling the number
of truth classes, and the number of columns equalling the num-
ber of clusters. Each cell in the table is a count of the number
of observations assigned to the corresponding class and cluster
labels. We turn this into a confusion matrix by merging each
cluster-column to class-columns indicated by their row (class)

which has the maximum count. Some classes will have zero
counts, and multiple clusters may be merged into one class. We
believe this is entirely unbiased, but may heavily penalise the
clustering results in situations where no clusters map to a class.
Also, trivial clustering solutions may be rewarded, i.e., when
many clusters are found there is a greater chance they will be
merged into the correct classes. It is worth noting that NMI
does not suffer from these problems. We do not use training or
test sets since no labels are used by the algorithm. Also there is
no closed form solution for predicting labels on new data with
the SCM and MCM.

For all datasets, the MCM has a truncation level Ttrunc = 30
and the SCM Ttrunc = 100. The SCM and MCM are also
run ten times for each dataset with a random initialisation of
Y. The VDP, G-LDA, SCM and MCM code is all written in
multi-threaded C++, though we only use one thread for most
experiments to be strictly fair in our comparisons. All exper-
iments were performed on a 2009 Core 2 Duo 3 GHz system
with 6GB RAM.

6.1. MSRC

The first dataset considered is Microsoft’s MSRC v2 dataset,
which has both scene and object labels. We use the same 10
scene categories as [4, 6], with a total of 320 images (320×213
pixels). These images contained 15 segmented object cate-
gories, the “void” object category was not included. We found
that 5× 5 pixel un-normalised patches worked best for the ICA
descriptors (with a dictionary of 50 bases).

The results for image clustering/classification are given in
Table 1, with the line separating the unsupervised from the su-
pervised algorithms. The VDP+ScSPM refers to running the
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(a) Image clusters. (b) Segment clusters.

Figure 5: (a) A random selection of images from 8 of the 15 image clusters
found by our proposed model on the MSRC dataset, (b) some of the (28) cor-
responding segment clusters. The image clusters have a normalised mutual
information (NMI) score of 0.731, the segment clusters have an NMI of 0.580.
No training or annotation data is used.

Table 1: Image performance for the MSRC dataset. More statistics for the
MCM and SCM are shown in Figure 6. The VDP finds T = 14. #0 indicates
the average number of unassigned classes or zeros on the diagonal of the con-
fusion matrix. The horizontal line separates the unsupervised from (weakly)
supervised algorithms.

Algorithm NMI Acc. (% (std.), #0)

MCM (Cw,s = 0.4, Cw,i = 0.08) 0.713 (0.023) 72.0 (3.3), 1.1
SCM (Cw,s = 0.2, θ = 1) 0.652 (0.018) 63.5 (3.0), 2.1

VDP+ScSPM (Cw,i = 0.02) 0.636 56.69, 2
SC+ScSPM [46] 0.643 (0.002) 66.1 (1.6), 2.1

L2-LEM-χ2 [28] (dense SIFT BoW) 0.554 (0.018) 62.0 (2.7), 1.1

Du et. al. [4] 0.745 82.9
Du et. al. [4] LSBP 0.801 86.8

Li et. al. [6] 0.820 89.06

VDP with the image ScSPM based descriptors, and SC+ScSPM
refers to self-tuning spectral clustering (SC) [46] using ScSPM
features. For spectral clustering we use 10 random restarts, a
10 nearest neighbour sparse similarity matrix, and set the num-
ber of clusters to be the true number of classes. We also use
self-tuning spectral clustering with T = 10 for the L2-LEM-χ2

algorithm with BoW features [28], but with a dense similarity
matrix and a chi-square kernel.

The MCM performs substantially better for image cluster-
ing than all of the other unsupervised methods for this dataset,
but does lag behind the weakly supervised methods of [4, 6].
However, the MCM still manages to achieve visually consis-
tent image and segment clusters, see Figure 5.

Segment clustering performance was quantified on a per-
segment basis, as opposed to per-pixel, which would have been
too costly to evaluate for all images in these experiments. Also,
the labelled segments provided were fairly coarse (this is es-
pecially true of the next dataset), and so we are more con-
cerned with consistently recognising the same objects, as op-
posed to extracting them precisely. In order to assign a seg-
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Figure 6: Segment performance on the MSRC v2 dataset. The MCM uses
Cw,i = 0.08 for the image cluster prior. The VDP, G-LDA and SCM can only
observe xjin here.

ment a ground-truth label, the mode of the pixels in the seg-
ment had to be of the label type. To quantify the algorithms’
segment clustering performance, we ran them for an array of
Cw,s values. The results are summarised in Figure 6. We can
see that the MCM consistently outperforms the VDP and G-
LDA, wheras the SCM initially starts on par with the MCM,
but then converges to the same performance as G-LDA. For
this dataset scene-type context can improve performance over
image-context and no context for segment clustering. We can
also see the quality of the scene-types (image clusters) found
has an effect on the quality of the object-types found.

We have only used a single mean-shift parameterisation that
leads to over-segmentation for these results. It would seem pru-
dent to cluster segments from multiple segmentation parame-
terisations simultaneously, as in [20, 26]. In this way, the prob-
ability of extracting the “true” object boundaries within a scene
is increased. However, the MCM and SCM both assume that
a scene-type is represented as a distribution of objects, so in-
corporating multiple segmentation results could bias scene dis-
covery. We will leave multiple segmentation as the subject of
future work, and for now rely on over-segmentation to achieve
reasonable object boundary detection.

6.2. LabelMe
The next dataset we used was obtained from LabelMe [47].

It is comprised of 2688 images (256×256 pixels), with 8 scene
classes. Here we found 7 × 7 un-normalised image patches
worked best for the ICA descriptors (60 bases). The segment la-
bels for this dataset were unconstrained in their categories, and
so using the LabelMe Matlab toolbox, we combined all of the
labels with 5 or more instances into 22 classes1.The appearance

1The manifest file is located: www.daniel-steinberg.info/publications.html
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Figure 7: Segment performance for LabelMe. Again, the VDP, G-LDA and
SCM can only observe xjin here.

Table 2: Image performance for the LabelMe dataset for Cw,i = 0.08. The
VDP finds T = 8.

Algorithm NMI Acc. (% (std.), #0)

MCM (Cw,s = 11, Cw,i = 0.08) 0.670 (0.009) 80.0 (2.8), 0.1
SCM (Cw,s = 3, θ = 10) 0.459 (0.006) 58.4 (1.2), 0.5

VDP+ScSPM (Cw,i = 0.08) 0.708 82.3, 0
SC+ScSPM [46] 0.679 (0.017) 74.1 (3.5), 1.1

Li et. al. [6] 0.600 76.25
sLDA [2] 0.606 76

sLDA [2] (annots.) 0.606 76
DiscLDA+GC [14] 0.646 81

CD-BCC [7] 0.682 83.15
SVM + ScSPM [41] 0.6958 84.38

CA-TM [14] 0.729 87

of these object classes is far less constrained than the MSRC
dataset.

Again we compare the unsupervised methods to state-of-the-
art weakly, semi- and supervised methods in Table 2. Inter-
estingly, the VDP performs best out of all of the unsupervised
methods, it even outperforms a supervised support vector ma-
chine (SVM) using unmodified ScSPM features. The VDP is
followed by spectral clustering and the MCM, which are within
one standard deviation. The SCM performs very poorly on this
dataset. All unsupervised methods apart from the SCM are
quite competitive with the supervised methods on this dataset.

In this experiment it appears that the segment clusters are
confounding the SCM image clustering. This would also ex-
plain the disparity between the VDP and the MCM, though the
MCM is more robust than the SCM.

From Figure 7 we can see the MCM far outperforms the
other unsupervised algorithms for segment clustering. The
SCM marginally outperforms G-LDA, which both outperform
the VDP. This demonstrates that object discovery can be im-
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Figure 8: Image performance for the UIUC sports dataset. Cw,s = 1 was used
for the MCM and SCM. Only the mean value for the SCM for the segment
cluster prior is shown since it does not cluster image descriptors and so does
not make use of the Cw,i prior.

proved by incorporating scene contextual information. Like in
the MSRC dataset, we see that scene discovery performance
can directly affect object discovery performance.

It is worth making some remarks on the visual effect on the
clusters as we change the Cw,i and Cw,s parameters. Typi-
cally smaller settings of these parameters lead to more clusters
(though after a point we may get fewer clusters once more).
Usually larger clusters would be split fairly evenly into smaller
clusters unless the images comprising a cluster were quite dis-
tinct. This is a consequence of the free energy objective, which
tends to only make small clusters if the data-fitting terms over-
come the complexity penalties.

6.3. UIUC Sports

The final standard dataset is the UIUC sports dataset used
by [2–4, 6, 14]. This dataset depicts 8 types of sporting events
and has 1579 images. To be consistent, we limit the maximum
dimension of the images to be 320 pixels. Unfortunately no
segment labels were available for this dataset. We use the same
segment descriptor settings as the MSRC dataset. Results for
scene recognition are presented in Table 3. Note that the algo-
rithm from [4] is also fully unsupervised for this dataset.

Image classification in this dataset is more difficult than the
others presented so far, as evident in the lower NMI and classifi-
cation scores. Despite this, somewhat surprisingly, the MCM is
one of the best performing algorithms on this dataset, including
the supervised algorithms. We have also compared the MCM
and VDP for image clustering with varying Cw,i in Figure 8.
There are no groups in this dataset, so G-LDA would be very
similar to the VDP in performance. We have also plotted the
performance of the SCM with θ = 50 (average of 10 runs),
which was found to give the best results. The MCM far outper-
forms the VDP, and is far more consistent in its performance
across the range of Cw,i chosen. However, it does take longer
to find image clusters than both the SCM and the VDP. An ex-
ample of the image and segment clusters found by the MCM is
shown in Figure 9.
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Table 3: Image performance for UIUC sport events. The VDP finds T = 6. The
MCM finds mean K = 30.2, and the SCM K = 20, for other statistics see
Figure 8.

Algorithm NMI Acc. (% (std.), #0)

MCM (Cw,s = 1, Cw,i = 0.16) 0.641 (0.018) 74.1 (1.5), 1
SCM (Cw,s = 1, θ = 50) 0.495 (0.008) 63.3 (1.5), 0.6

VDP+ScSPM (Cw,i = 0.12) 0.557 63.4, 2
SC+ScSPM [46] 0.429 (0.02) 58.9 (2.4), 1.1

Du et. al. [4] no LSBP 0.389 60.5
Du et. al. [4] LSBP 0.418 63.5

Li et. al. [3] 0.276 54
sLDA [2] (annots.) 0.438 66

sLDA [2] 0.446 65
Li et. al. [6] 0.466 69.11

DiscLDA+GC [14] 0.506 70
SVM+ScSPM [41] 0.549 72.9

CD-BCC [7] 0.556 75.15
CA-TM [14] 0.592 78

(a) Image clusters. (b) Segment clusters.

Figure 9: (a) A random selection of images from 5 of the 10 image clusters
found by the MCM on the UIUC dataset, and (b) some of the (30) correspond-
ing segment clusters. Here Cw,i = 0.16 and Cw,s = 1, the image clusters
have a NMI score of 0.652 and an estimated accuracy of 74.0%.

6.4. Large AUV dataset
The last dataset we use is a novel dataset containing im-

ages of various underwater habitats obtained by an AUV from
J = 12 deployments off of the east coast of Tasmania, Aus-
tralia [48]. This dataset has 100,647 downward looking stereo
pair images taken from an altitude of 2m. The monochrome
image of the pair is used for the ScSPM descriptors, and the
colour for the ICA segment descriptors. The images are re-
duced to 320× 235 pixels (again to be consistent with the pre-
vious experiments). We used 5× 5 pixels patches that had their
DC components removed and were contrast normalised for both
ICA dictionary learning (50 bases) and encoding. This helped
with the illumination variations in this dataset.

This dataset has nine image classes: fine sand, coarse sand,
screw shell rubble≥ 50%, screw shell rubble< 50%, sand/reef
interface, patch reef, low relief reef, high relief reef, Ecklonia
(kelp). 6011 of these images are labelled. Many of these classes
are quite visually similar so the labels have a small amount of
noise. Exemplars of each class are shown in Figure 10. We do
not use any segment labels for this dataset.

The entire 100,647 image dataset was clustered using the
VDP, G-LDA, SCM and MCM. The 12 dives act as albums
for G-LDA, the SCM and the MCM, and the SCM and MCM

Figure 10: Exemplars of the nine AUV habitat classes.
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Figure 11: Image clustering performance for the Tasmania AUV dataset.
Cw,s = 350 was used for the MCM and SCM. The (*) in the legend means
the MCM and SCM used 8 cores of a Xeon (E5-4260) 2.2 GHz processor. The
VDP and G-LDA used one core of a 3.0 GHz Core 2 Duo processor. Note the
significant run-time difference between G-LDA and the VDP.

use Cw,s = 350. The VDP cannot take advantage of the groups
in this dataset. Figure 11 summarises these results for varying
Cw,i (the 6011 labelled images were used for validation). The
VDP, G-LDA and MCM all begin with similar image clustering
performance, however the VDP and G-LDA rapidly decrease
in performance with increasing Cw,i, whereas the MCM main-
tains, and even increases its performance. Again we just show
the average of 10 runs with θ = 1000 for the SCM since it does
not use Cw,i. An example of some clusters found by the MCM
are shown in Figure 12. Interestingly, the MCM has sufficient
evidence to model the image vignetting and distortion artefacts
induced by the air-acrylic-water interface of the camera hous-
ing. This is particularly evident in the fourth image cluster from
the top (red).

Since the VDP and G-LDA only use image observations,
they are run on the Core 2 Duo machine using one core. The
SCM and MCM also have two million segments to cluster in
addition to the images, and so they are run on eight Xeon E5-
4260 2.2 GHz cores. It is interesting to note in Figure 11 that
although the VDP and G-LDA only use one core, G-LDA is
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(a) Random image cluster examples (b) Corresponding segment clusters

Figure 12: (a) A random selection of images from all of the 9 image clusters
found by the MCM. Also shown in (b) are the corresponding segment clusters
(11 in total). In this run, the image clusters achieved a NMI score of 0.499, and
the segments a NMI score of 0.325. The priors used were Cw,i = 0.27 and
Cw,s = 18.

0.44

0.46

0.48

Im
ag

e 
N

M
I

10

15

20

25

Im
g
. 
cl

u
st

er
s

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

2000

4000

6000

8000

T
im

e 
(s

)

Image cluster prior, C
w,i

 

 

MCM

SCM

MCM (no−groups)

SCM (no−groups)

Figure 13: Comparison of modelling the AUV dives as separate groups com-
pared to just one group on the AUV dataset. The MCM and SCM use Cw,s =
350 for the segment cluster prior, and both SCM variants use θ = 1000.

consistently faster despite the two algorithms being very simi-
lar. We believe this is because modelling the different groups,
or dives, in this dataset helps to expose separation between
the clusters in the dataset. For instance, there are some dives
that may exhibit only coarse sand while others may also ex-
hibit screw shell rubble because of their location. So although
these two classes may appear visually similar, the contextual
information inherent in the dives’ locations helps to distinguish
these classes [39]. G-LDA can take advantage of this structure,
which helps to simplify inference.

Like G-LDA, the MCM and SCM can also model groups.
To verify if these algorithms can take advantage of this group
structure we have compared them using J = 12 groups to only
J = 1 group by concatenating the data from the dives. The
results are shown in Figure 13. The MCM with J = 1 seems to
perform worse than the J = 12 version for image clustering for
some values of Cw,i. Also the SCM without groups performs

marginally worse. The largest difference though is the MCM
runtime with no groups. This runtime difference can be par-
tially attributed to the way the MCM code is parallelised. The
VBE step for the Y indicators (19) is parallelised over groups
in the original MCM, and so the MCM without groups cannot
take advantage of this. However, the VBE step for the segment
indicators, Z, has a larger computational cost (there are twenty
times more segment observations than image observations), and
is paralellised over images the same way in both MCM variants.
So, it is unlikely the difference in the way the VBE-Y step is
parallelised can entirely account for the three-fold run time in-
crease. Part of this is likely attributable to the same cluster sep-
aration effect experience by G-LDA. The MCM with J = 12
incorporates G-LDA as part of its image model, where as when
it has J = 1 it is more similar to the VDP at the image level.

6.5. Symmetric Dirichlet vs. Generalised Dirichlet

In section 3 we used a generalised Dirichlet prior over the
group mixture weights, πj , for the SCM and MCM. Here we
wish to empirically validate this choice of prior. For this pur-
pose, we formulate variants of these two models with symmet-
ric Dirichlet priors, πj ∼ Dir(a), for comparison. These vari-
ants are run on all of the datasets mentioned previously, and the
results are summarised in Figure 14.

As we can see from Figure 14, the symmetric Dirichlet prior
versions of the SCM and MCM have very comparable NMI
scores to their generalised Dirichlet counterparts. The SCM
variants do show show slightly more variability in the UIUC
and AUV datasets though. The MCM has almost the exact same
results all-round, whereas the SCM with a symmetric Dirichlet
prior finds more image clusters. In fact it appears to almost
always find T = Ttrunc = 100 image clusters for all but the
small MSRC dataset. Even then it shows potential instability
when looking at the variance at Cw,s = 1.8.

The generalised Dirichlet is a suitable choice of mixture
weight prior for the SCM since it helps to control the number
of image clusters found. This could be because it has twice the
number of parameters as the Dirichlet prior, and so contributes
more to the free energy model complexity penalty. This per-
formance is also similar to the difference between LDA and
HDPs when used for model selection in natural language pro-
cessing [34]. The choice of prior does not seem to matter as
much for the MCM, as the Gaussian image clusters contribute
adequately to model complexity.

7. Conclusion

It has been long established that using discriminative visual
features is essential for both unsupervised and supervised appli-
cations such as scene recognition, object detection, and scene
understanding. In this work we have also shown that the choice
of model structure has a large influence on results for scene
understanding tasks in the absence of any semantic knowledge
such as image tags, accompanying text, or image or object la-
bels. We have also shown that with appropriate model struc-
ture and choice of visual features, unsupervised methods can
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Figure 14: Comparison of generalised Dirichlet vs. Dirichlet image cluster mixture priors for the SCM and MCM on the all of the previous datasets. The Dirichlet
version of the SCM shows rather pathelogical behaviour for image clustering, in that it often finds T = Ttrunc = 100 image clusters. The MCM variants are
almost indistinguishable.

be competitive with weakly, semi, and supervised methods for
scene understanding. From the experiments in section 6 we
have also been able to conclude:

• Modelling albums or groups did not provide a large benefit
to clustering performance. However algorithm run-time
can be significantly reduced by additional parallelisation
and using the structure of the groups to help expose the
latent clusters.

• Scene-type context for segment clustering (SCM and
MCM) helped performance more than image context (G-
LDA), which is in turn better than no context (VDP). The
better the discovered scene-types, the better the segment-
clusters.

• The generalised Dirichlet prior on the group weights, πj ,
helps to control the number of Multinomial image clusters
found in the SCM. However, it does not appear to affect
models with Gaussian clusters, such as the MCM. This
was also found to be the same for G-LDA.

• The Multinomial “bag-of-segments” representation for
images used by the SCM does not perform as well as the
mixture of Gaussian ScSPM representation in most cases.
Whereas the ScSPM representation does not work well on
small datasets, and can be sensitive to the choice of prior,
Cw,i. The MCM combines the strengths of both of these
complementary approaches, usually resulting in better and
more robust image and segment clustering performance.
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One direction for future work would be to model spatial-
layout within the graphical models themselves, like in [14],
while simultaneously modelling the co-occurrence between ob-
jects. Perhaps in this way joint object spatial and co-occurrence
structure could be learned in an unsupervised manner.

8. Acknowledgements

This work is funded by the Australian Research Council, the
New South Wales State Government, and the Integrated Marine
Observing System. The authors acknowledge the providers of
the datasets and those who released their code that was used in
the validation of this work.

References

[1] D. M. Blei, M. I. Jordan, Modeling annotated data, in: Proceedings of
the 26th annual international ACM SIGIR conference on Research and
development in informaion retrieval, SIGIR ’03, ACM, New York, NY,
USA, 2003, pp. 127–134.

[2] C. Wang, D. Blei, L. Fei-Fei, Simultaneous image classification and anno-
tation, in: Computer Vision and Pattern Recognition. CVPR. IEEE Con-
ference on, IEEE, 2009, pp. 1903–1910.

[3] L.-J. Li, R. Socher, L. Fei-Fei, Towards total scene understanding: Clas-
sification, annotation and segmentation in an automatic framework, in:
Computer Vision and Pattern Recognition (CVPR). IEEE Conference on,
2009, pp. 2036–2043.

[4] L. Du, L. Ren, D. Dunson, L. Carin, A Bayesian model for simultaneous
image clustering, annotation and object segmentation, in: Advances in
Neural Information Processing Systems, Vol. 22, 2009, pp. 486–494.

[5] R. Socher, L. Fei-Fei, Connecting modalities: Semi-supervised segmenta-
tion and annotation of images using unaligned text corpora, in: Computer
Vision and Pattern Recognition. CVPR. IEEE Conference on, 2010, pp.
966–973.

[6] L. Li, M. Zhou, G. Sapiro, L. Carin, On the integration of topic modeling
and dictionary learning, International Conference on Machine Learning.

[7] G. Irie, D. Liu, Z. Li, S.-F. Chang, A Bayesian approach to multimodal
visual dictionary learning, in: Computer Vision and Pattern Recognition.
CVPR. IEEE Conference on, IEEE, 2013.

[8] H. Attias, A variational Bayesian framework for graphical models, Ad-
vances in neural information processing systems 12 (1-2) (2000) 209–
215.

[9] D. M. Blei, A. Y. Ng, M. I. Jordan, Latent Dirichlet allocation, The Jour-
nal of Machine Learning Research 3 (2003) 993–1022.

[10] D. Wulsin, S. Jensen, B. Litt, A Hierarchical Dirichlet process model
with multiple levels of clustering for human EEG seizure modeling, in:
Internation Conference on Machine Learning (ICML), 2012.

[11] A. Oliva, A. Torralba, Building the gist of a scene: The role of global
image features in recognition, Progress in brain research 155 (2006) 23.

[12] A. Oliva, A. Torralba, The role of context in object recognition, Trends in
Cognitive Sciences 11 (12) (2007) 520–527.

[13] L. Cao, L. Fei-Fei, Spatially coherent latent topic model for concurrent
segmentation and classification of objects and scenes, in: Computer Vi-
sion. ICCV. IEEE 11th International Conference on, 2007, pp. 1–8.

[14] Z. Niu, G. Hua, X. Gao, Q. Tian, Context aware topic model for scene
recognition, in: Computer Vision and Pattern Recognition. CVPR. IEEE
Conference on, 2012, pp. 2743–2750.

[15] E. Sudderth, A. Torralba, W. Freeman, A. Willsky, Learning hierarchical
models of scenes, objects, and parts, in: Computer Vision. ICCV. Tenth
IEEE International Conference on, Vol. 2, 2005, pp. 1331–1338.

[16] L. Fei-Fei, L.-J. Li, What, where and who? telling the story of an image
by activity classification, scene recognition and object categorization, in:
R. Cipolla, S. Battiato, G. Farinella (Eds.), Computer Vision, Vol. 285 of
Studies in Computational Intelligence, Springer Berlin Heidelberg, 2010,
pp. 157–171.

[17] A. Torralba, K. Murphy, W. Freeman, M. Rubin, Context-based vision
system for place and object recognition, in: Computer Vision. ICCV.
Ninth IEEE International Conference on, Vol. 1, 2003, pp. 273–280.

[18] A. Torralba, K. P. Murphy, W. T. Freeman, Using the forest to see the
trees: exploiting context for visual object detection and localization,
Commun. ACM 53 (3) (2010) 107–114.

[19] M. J. Choi, J. Lim, A. Torralba, A. Willsky, Exploiting hierarchical con-
text on a large database of object categories, in: Computer Vision and
Pattern Recognition. CVPR. IEEE Conference on, 2010, pp. 129–136.

[20] Y. J. Lee, K. Grauman, Object-graphs for context-aware category discov-
ery, in: Computer Vision and Pattern Recognition. CVPR. IEEE Confer-
ence on, IEEE, 2010, pp. 1–8.

[21] X. Wang, E. Grimson, Spatial latent Dirichlet allocation, Advances in
Neural Information Processing Systems 20 (2007) 1577–1584.

[22] Q. An, C. Wang, I. Shterev, E. Wang, L. Carin, D. B. Dunson, Hierarchi-
cal kernel stick-breaking process for multi-task image analysis, in: Pro-
ceedings of the 25th international conference on Machine learning, ACM,
2008, pp. 17–24.

[23] E. B. Sudderth, M. I. Jordan, Shared segmentation of natural scenes using
dependent Pitman-Yor processes, Advances in Neural Information Pro-
cessing Systems 21 (2009) 1585–1592.

[24] B. Zhao, L. Fei-Fei, E. Xing, Image segmentation with topic random
field, in: K. Daniilidis, P. Maragos, N. Paragios (Eds.), Computer Vision
ECCV 2010, Vol. 6315 of Lecture Notes in Computer Science, Springer
Berlin Heidelberg, 2010, pp. 785–798.

[25] D. M. Steinberg, O. Pizarro, S. B. Williams, Synergistic clustering of
image and segment descriptors for unsupervised scene understanding, in:
Computer Vision (ICCV), 2013 IEEE International Conference on, 2013,
pp. 3463–3470.

[26] B. C. Russell, W. T. Freeman, A. A. Efros, J. Sivic, A. Zisserman, Us-
ing multiple segmentations to discover objects and their extent in image
collections, in: Computer Vision and Pattern Recognition. CVPR. IEEE
Conference on, IEEE, 2006, pp. 1605–1614.

[27] C. Galleguillos, B. McFee, S. Belongie, G. Lanckriet, From region simi-
larity to category discovery, in: Computer Vision and Pattern Recognition
(CVPR), 2011 IEEE Conference on, IEEE, 2011, pp. 2665–2672.

[28] T. Tuytelaars, C. H. Lampert, M. B. Blaschko, W. Buntine, Unsupervised
object discovery: A comparison, International Journal of Computer Vi-
sion 88 (2) (2010) 284–302.

[29] R. Gomes, M. Welling, P. Perona, Incremental learning of nonparametric
Bayesian mixture models, in: Computer Vision and Pattern Recognition.
CVPR. IEEE Conference on, IEEE, 2008, pp. 1–8.

[30] N. Bouguila, D. Ziou, A nonparametric Bayesian learning model: Appli-
cation to text and image categorization, Advances in Knowledge Discov-
ery and Data Mining (2009) 463–474.

[31] D. Dai, T. Wut, S.-C. Zhu, Discovering scene categories by information
projection and cluster sampling, in: Computer Vision and Pattern Recog-
nition (CVPR). IEEE Conference on, IEEE, 2010, pp. 3455–3462.

[32] K. Kurihara, M. Welling, N. Vlassis, Accelerated variational Dirichlet
process mixtures, Advances in Neural Information Processing Systems
19 (2007) 761.

[33] T. S. Ferguson, A Bayesian analysis of some nonparametric problems,
The Annals of Statistics 1 (2) (1973) 209–230.

[34] Y. W. Teh, M. I. Jordan, M. J. Beal, D. M. Blei, Hierarchical Dirichlet pro-
cesses, Journal of the American Statistical Association 101 (476) (2006)
1566–1581.

[35] R. J. Connor, J. E. Mosimann, Concepts of independence for proportions
with a generalization of the Dirichlet distribution, Journal of the American
Statistical Association 64 (325) (1969) 194–206.

[36] T. T. Wong, Generalized Dirichlet distribution in Bayesian analysis, Ap-
plied Mathematics and Computation 97 (2-3) (1998) 165–181.

[37] H. Ishwaran, L. F. James, Gibbs sampling methods for stick-breaking pri-
ors, Journal of the American Statistical Association 96 (453) (2001) 161–
173.

[38] C. M. Bishop, Pattern Recognition and Machine Learning, Springer Sci-
ence+Business Media, Cambridge, UK, 2006.

[39] D. M. Steinberg, An unsupervised approach to modelling visual data,
Ph.D. thesis, The University of Sydney (2013).

[40] M. J. Beal, Variational algorithms for approximate bayesian inference,
Ph.D. thesis, University College London (2003).

[41] J. Yang, K. Yu, Y. Gong, T. Huang, Linear spatial pyramid matching using
sparse coding for image classification, in: Computer Vision and Pattern
Recognition. CVPR. IEEE Conference on, 2009, pp. 1794–1801.

[42] A. Coates, A. Ng, The importance of encoding versus training with sparse

16



coding and vector quantization, in: Proceedings of the 28th International
Conference on Machine Learning, ICML ’11, ACM, New York, NY,
USA, 2011, pp. 921–928.

[43] A. Hyvärinen, E. Oja, Independent component analysis: algorithms and
applications, Neural Networks 13 (45) (2000) 411–430.

[44] C. Christoudias, B. Georgescu, P. Meer, Synergism in low level vision,
in: 16th International Conference on Pattern Recognition, Vol. 4, 2002,
pp. 150–155 vol.4.

[45] A. Strehl, J. Ghosh, Cluster ensembles – a knowledge reuse framework
for combining multiple partitions, Journal of Machine Learning Research
3 (2003) 583–617.

[46] L. Zelnik-Manor, P. Perona, Self-tuning spectral clustering, in: Advances
in Neural Information Processing Systems, Vol. 17, 2004, pp. 1601–1608.

[47] B. C. Russell, A. Torralba, K. Murphy, W. Freeman, LabelMe: A database
and web-based tool for image annotation, International Journal of Com-
puter Vision 77 (2008) 157–173, 10.1007/s11263-007-0090-8.

[48] S. B. Williams, O. R. Pizarro, M. V. Jakuba, C. R. Johnson, N. S. Barrett,
R. C. Babcock, G. A. Kendrick, P. D. Steinberg, A. J. Heyward, P. J.
Doherty, I. Mahon, M. Johnson-Roberson, D. M. Steinberg, A. Friedman,
Monitoring of benthic reference sites: using an autonomous underwater
vehicle, Robotics Automation Magazine, IEEE 19 (1) (2012) 73–84.

Appendix A. Free Energy Objective Functions

In this appendix we give the full free energy objective func-
tions for the SCM and MCM.

Appendix A.1. Simultaneous Clustering Model

FSCM =

T∑
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Eqβ
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log
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]
, (A.1)

The last three terms’ expectations are with respect to all of
the latent variables and parameters. These last three terms
act like a data-fitting objectives, and the first three terms act
as model complexity penalties. It is also worth noting that
Eqy [1[yji = t]] = q(yji=t), and similarly for zjin.

Appendix A.2. Multiple-source Clustering Model

FMCM =
T∑

t=1

Eqβ

[
log

Dir(βt|θ)
q(βt)

]

+

T∑
t=1

Eqη,Ψ

[
log
N
(
ηt|h, (δΨt)-1

)
W(Ψt|Φ, ξ)

q(ηt,Ψt)

]

+

K∑
k=1

Eqµ,Λ

[
log
N
(
µk|m, (γΛk)

-1
)
W(Λk|Ω, ρ)

q(µk,Λk)

]

+

J∑
j=1

Eqπ

[
log

GDir(πj |a, b)
q(πj)

]

+

J∑
j=1

Ij∑
i=1

Eq

[
log

Categ(yji|πj)

q(yji)

]

+

J∑
j=1

Ij∑
i=1

T∑
t=1

Eq

[
log
N (wji|ηt,Ψt)

1[yji=t]

q(yji)

]

+

J∑
j=1

Ij∑
i=1

Nji∑
n=1

T∑
t=1

Eq

[
log

Categ(zjin|βt)
1[yji=t]

q(zjin)

]

+

J∑
j=1

Ij∑
i=1

Nji∑
n=1

K∑
k=1

Eq

[
log
N (xjin|µk,Λk)

1[zjin=k]

q(zjin)

]
, (A.2)

The last four terms’ expectations are with respect to all of
the latent variables and parameters. Now the last four terms act
like a data-fitting objectives and the first four terms act as model
complexity penalties.

Appendix B. Variational Expectations

Appendix B.1. Dirichlet Distribution
The Categorical distribution is most often used as the likeli-

hood of the Dirichlet distribution in this paper,

Categ(zjin|βt) =

K∏
k=1

β
1[zjin=k]
tk . (B.1)

Here 1[·] is an indicator function, and evaluates to 1 when the
condition in the brackets is true, and 0 otherwise. The corre-
sponding Dirichlet prior has the form,

Dir(βt|θ) =
Γ(K · θ)
Γ(θ)

K

K∏
k=1

βθ−1tk , (B.2)

here Γ(·) is a Gamma function. This is a symmetric
Dirichlet prior, another a commonly used parameterisation is
Dir(βt|θ/K).

Appendix B.1.1. Expectations over the likelihood
The log Categorical expectation under a generalised Dirichlet

is,

Eqβ [log p(zjin = k|βt)] = Eqβ [log βtk]

= Ψ
(
θ̃tk

)
−Ψ

(∑
k

θ̃tk

)
, (B.3)

where Ψ(·) is a Digamma function, and θ̃tk is from (20).

Appendix B.1.2. Free energy expectations
The expectations of the model complexity penalty terms are,

Eqβ
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]
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K∑
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θ̃tk

)

+

K∑
k=1

log Γ
(
θ̃tk

)
−K log Γ(θ)−

K∑
k=1

(
θ̃tk − θ

)
Eqβ [log βtk] ,

(B.4)
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where Eqβ [log βtk] is from Equation B.3.

Appendix B.2. Generalised Dirichlet Distribution

The Categorical distribution is most often used as the likeli-
hood of the Generalised Dirichlet distribution in this paper, see
Equation B.1. The generalised Dirichlet prior on the mixture
weights, GDir(πj |a, b) is parameterised in (15), and made use
of the Beta distribution over stick-lengths,

Beta(vjt|a, b) =
Γ(a+ b)

Γ(a) Γ(b)
va−1jt (1− vjt)b−1 . (B.5)

Appendix B.2.1. Expectations over the likelihood
The log Categorical expectation under a generalised Dirichlet

is,

Eqπ [log p(zjin = k|πj)] = Eqπ [log πjt]

= Eqv [log vjt] +

t−1∑
s=1

Eqv [log(1− vjs)] , (B.6)

where,

Eqv [log vjt] =

{
Ψ(ãjt)−Ψ

(
ãjt + b̃jt

)
if t < T

0 if t = T,
(B.7)

ãjt and b̃jt are given in (20), and

Eqv [log(1− vjt)] = Ψ
(
b̃jt

)
−Ψ

(
ãjt + b̃jt

)
if t < T.

(B.8)

Appendix B.2.2. Free energy expectations
The expectations of the model complexity penalty terms can

be factorised,

Eqπ
[
log

GDir(πj |a, b)
q(πj)

]
=

T−1∑
t=1

Eqπ
[
log

p(πjt|a, b)
q(πjt)

]
,

(B.9)
where

Eqπ
[
log

p(πjt|a, b)
q(πjt)

]
= − (ãjt − a)Eqv [log vjt]

−
(
b̃jt − b

)
Eqv [log(1− vjt)] + log Γ(ãjt)

− log Γ(a) + log Γ
(
b̃jt

)
− log Γ(b)

− log Γ
(
ãjt + b̃jt

)
+ log Γ(a+ b) . (B.10)

The free energy penalty term over the weights in Equation B.10
only sums to T − 1 (degrees of freedom).

Appendix B.3. Gaussian-Wishart Distribution
Gaussian distributions are often used to describe segment

clusters2 in this paper, which take the form,

N
(
xjin|µk,Λ

-1
k

)
=
|Λk|1/2

(2π)D/2

× exp

{
−1

2
(xjin − µk)

>
Λk (xjin − µk)

}
. (B.11)

A Gaussian-Wishart prior is placed over the parameters,

N
(
µk|m, (γΛk)

-1
)

=
|γΛk|1/2

(2π)D/2

× exp
{
−γ

2
(µk −m)

>
Λk (µk −m)

}
,

(B.12)

W(Λk|Ω, ρ) =
|Λk|(ρ−D−1)/2

2ρD/2 |Ω|ρ/2 ΓD
(
ρ
2

)
× exp

{
−1

2
Tr
(
Ω-1Λk

)}
, (B.13)

where ΓD(·) is a multivariate Gamma function,

ΓD

(ρ
2

)
= πD(D−1)/4

D∏
d=1

Γ

(
ρ+ 1− d

2

)
. (B.14)

Appendix B.3.1. Expectations over the likelihood
The log Gaussian expectation under a Gaussian-Wishart

prior is,

Eqµ,Λ
[
logN

(
xjin|µk,Λ

-1
k

)]
=

1

2
EqΛ [log |Λk|]

− D

2γ̃k
− ρ̃k

2
(xjin − m̃k)

>
Ω̃k (xjin − m̃k) , (B.15)

where

EqΛ [log |Λk|] =

D∑
d=1

Ψ

(
ρ̃k + 1− d

2

)
+D log 2 + log

∣∣∣Ω̃k

∣∣∣ .
(B.16)

All of the posterior parameters (̃·) are from (21).

Appendix B.3.2. Free energy expectations
The expectations of the model complexity penalty terms are,

Eqµ,Λ

log
N
(
µk|m, (γΛk)

-1
)
W(Λk|Ω, ρ)

q(µk,Λk)

 =

− D

2

(
γ

γ̃k
− log

γ

γ̃k
− ρ̃k − 1

)
− ρ

2

(
log |Ω| − log |Ω̃k|

)
− ρ̃k

2
Tr
(
Ω-1Ω̃k

)
− ρ̃kγ

2
(m̃k −m)

>
Ω̃k (m̃k −m)

2These equations are almost the same for the image clusters, so they are
omitted.
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−
D∑
d=1

(
Nk
2

Ψ

(
ρ̃k + 1− d

2

)
+ log Γ

(
ρ+ 1− d

2

)

− log Γ

(
ρ̃k + 1− d

2

))
. (B.17)

Appendix C. Model Selection Heuristic

The greedy splitting heuristic is based on two criteria. The
first is the approximate free energy contribution of the segment
cluster parameters and segment observations to be split. The
second is how many split attempts have been tried for the seg-
ment cluster and not been accepted previously. The cluster split
attempts are ordered by (a) least number of previous split at-
tempts for the clusters, then (b) clusters with more free energy
contribution. The first attempt that reduces model free energy
is accepted. The approximate contribution to free energy is for-
mulated from the heuristic,

F̂k = Eqµ,Λ

log
N
(
µk|m, (γΛk)

-1
)
W(Λk|Ω, ρ)

q(µk,Λk)


+

J∑
j=1

Ij∑
i=1

Nji∑
n=1

q(zjin = k)Lzjin=k (C.1)

where Lzjin=k is the mixture likelihood of observation xjin
under segment cluster k (including the effect of the mixture
weights). This likelihood is weighted by the observation’s prob-
abilistic membership to cluster k. For the SCM and MCM the
exact form of this heuristic is,

F̂k = Eqµ,Λ

log
N
(
µk|m, (γΛk)

-1
)
W(Λk|Ω, ρ)

q(µk,Λk)


+

J∑
j=1

Ij∑
i=1

Nji∑
n=1

q(zjin = k)Eqµ,Λ
[
logN

(
xjin|µk,Λ

-1
k

)]
.

(C.2)

A cluster weight term was not included in Equation C.2 because
a corresponding term of opposite sign existed in the last term
in Equation A.2, and adding it would nullify its effect in the
overall model free energy. Whereas the heuristic for G-LDA
applied to segment clustering is,

F̂k = Eqµ,Λ

log
N
(
µk|m, (γΛk)

-1
)
W(Λk|Ω, ρ)

q(µk,Λk)


+

I∑
i=1

Ni∑
n=1

q(zin = k)

[
Eqπ [log πik]

+ Eqµ,Λ
[
logN

(
xin|µk,Λ

-1
k

)] ]
, (C.3)

which includes a cluster weight term.

The observations belonging to a Gaussian (with
q(zjin = k) > 0.5) are split in a direction perpendicular
to its principal Eigenvector. This split is refined by iterating
the VBE and VBM steps on only these observations. The
algorithm is summarised in Algorithm 1 for the MCM, the
SCM is similar but does not include W. The expected model
free energy, E[Fsplit,k] is acquired by running variational
Bayes for one iteration, with the new split, using all of the
segment observations. To our knowledge this is the first time
a split tally has been used in a cluster splitting heuristic. It
was found to significantly reduce the run time of the algorithm
and improve results over just using approximate free energy to
guide the greedy search. This greedy cluster splitting heuristic
often less than halved the run time of the total algorithm
compared to the exhaustive cluster splitting heuristic. This
speed-up was even more pronounced for the larger datasets. It
also managed to maintain good clustering results compared to
the exhaustive heuristic.

Algorithm 1: The MCM greedy model selection heuristic
Data: Observations W,X
Result: Assignments q(Y) and q(Z) and posterior hyper-parameters Ξ̃

Ξ← CreatePriors();
q(Y)← RandomLabels(Ttrunc = 30);

q(Z)← {{1}
Ij
i=1}

J
j=1; // initialises with K = 1

splittally← {0}Kk=1;

repeat
q(Y) , q(Z) , Ξ̃,F ← VB(X, q(Y) , q(Z) ,Ξ);
splitorder← GreedySort(W,X, q(Z) , G, splittally); // sequence
foreach k ∈ splitorder do

Xsplit,k ← {xjin ∈ X : q(zjin = k) > 0.5};
q(Zsplit,k)← ClusterSplit(Xsplit,k);
q(Zsplit,k)← VB(W,Xsplit,k , {1}Jj=1, q(Zsplit,k),Ξ);
q(Zaug,k)← AugmentLabels(q(Z) , q(Zsplit,k)) ;
E[Fsplit,k]← VB(W,X, q(Y) , q(Zaug,k) ,Ξ); // 1 iter.
if F > E[Fsplit,k] then

q(Z)← q(Zaug,k);
splittallyk ← 0;
splittallyK+1 ← 0;
foundsplit← true;
break;

else
splittallyk ← splittallyk + 1;
foundsplit← false;

until foundsplit = false;

q(Y)← PruneEmptyClusters(q(Y));
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