Extended and Unscented Kitchen Sinks

Edwin V. Bonilla e.bonilla@unsw.edu.au The University of New South Wales

Daniel Steinberg Alistair Reid Daniel.Steinberg@nicta.com.au Alistair.Reid@nicta.com.au NICTA NICTA

Unscented Kitchen Sinks

Our solution considers:

- Random feature approximations to the covariance function (1);
- Affine transformations of latent processes (2); and
- Local and adaptive linearizations (3);

all within a single *variational inference* framework.

Multi-output Setting

We consider the supervised learning problem:

- Data: $\{\mathbf{x}_n, \mathbf{y}_n\}_{n=1}^N$, described compactly as $\{\mathbf{X}, \mathbf{Y}\}, \text{ where } \mathbf{X} \in \mathbb{R}^{N \times d} \text{ and } \mathbf{Y} \in \mathbb{R}^{N \times P}$
- Prior: Q latent functions $\{f_q\}$ drawn from independent GP priors with covariance $k_q(\cdot, \cdot)$:

$$p(\mathbf{F}) = \prod_{q=1}^{Q} \mathcal{N}(\mathbf{f}_{q}; \mathbf{0}, \mathbf{K}_{q})$$
(1)

• Non-linear forward model: $\mathbf{g} : \mathbb{R}^Q \to \mathbb{R}^P$ and

- $\phi_n \stackrel{\text{def}}{=} \phi(\mathbf{x}_n)$ is the *D*-dimensional vector of features corresponding to datapoint n;
- $\mathbf{w}_q \in \mathbb{R}^D$; $\mathbf{W} \in \mathbb{R}^{Q \times D}$; ω_q^2 is the prior variance over the weights; and
- $\Sigma = \text{diag}([\sigma_1^2, \dots, \sigma_P^2])$ is the noise variance.

Note that, effectively, we are making $\mathbf{f}_q = \mathbf{\Phi} \mathbf{w}_q$, with $\Phi \stackrel{\text{def}}{=} \phi(\mathbf{X})$ being the $N \times D$ matrix of features.

Posterior Inference

To deal with the nonlinear likelihood in Eq. (6), we use variational inference with the approximate posterior:

$$\tilde{q}_{\mathbf{W}} \stackrel{\text{def}}{=} \tilde{q}(\mathbf{W}) = \prod_{q=1}^{Q} \mathcal{N}(\mathbf{w}_{q} | \mathbf{m}_{q}, \mathbf{C}_{q}), \quad (7)$$

thereby yielding the posterior latent tasks,

$$\tilde{z}(\mathbf{F}) = \prod_{i=1}^{Q} \sqrt{(\mathbf{f} \mid \mathbf{A}_{min})} = \mathbf{A} \mathbf{C} \cdot \mathbf{A}^{T}$$

UKS estimates the linearization parameters using deterministic samples given by the unscented transform:

(12)

- 1. Exploit the structure from the marginal posterior $\tilde{q}(\mathbf{f}_{n}) = \mathcal{N}(\mathbf{f}_{n}, \mathbf{E}_{n})$
- 2. Define 2Q + 1 so-called sigma-points $\mathcal{F}_{i,n}$, labels $\mathcal{Y}_{i,n} = \mathbf{g}(\mathcal{F}_{i,n})$ and weights u_i
- 3. Solve the weighted linear least squares problems with inputs, outputs, and weights $\{\mathcal{F}_{i,n}, \mathcal{Y}_{i,n}, u_i\}$:

$$\mathbf{b}_n = \bar{\mathbf{y}}_n - \mathbf{A}_n \mathbf{M} \boldsymbol{\phi}_n \text{ and } \mathbf{A}_n = \boldsymbol{\Gamma}_n \mathbf{E}_n^{-1}, \quad (14)$$

where $\bar{\mathbf{y}}_n$ and Γ_n are the sufficient statistics.

UKS is truly a 'black-box' method

Experiments

SYNTHETIC INVERSION PROBLEMS:

likelihood:

 $p(\mathbf{Y}|\mathbf{F}) = \prod p(\mathbf{y}_n|\mathbf{g}(\mathbf{f}_{n})),$

Goal: Probabilistic predictions and posterior estimation $p(\mathbf{F}|\mathbf{Y})$

Extended and Unscented GPs

The Extended and Unscented Gaussian processes (UGP, EGP; [1]) deal with nonlinear $\mathbf{g}(\cdot)$:

(8) $q(\mathbf{F}) = \prod \mathcal{N}(\mathbf{I}_q | \mathbf{\Phi}\mathbf{m}_q, \mathbf{\Phi}\mathbf{C}_q\mathbf{\Phi}^{\perp}).$

VARIATIONAL OBJECTIVE: The variational logevidence lower bound is,

 $\mathcal{L} = \langle \log p(\mathbf{Y}|\mathbf{W}) \rangle_{\tilde{q}_{\mathbf{W}}} - \mathrm{KL}[\tilde{q}(\mathbf{W}) \| p(\mathbf{W})]. \quad (9)$

While the KL term is straightforward, the log likelihood term involves an expectation of a nonlinear function:

 $ig \langle (\mathbf{y}_n - \mathbf{g}(\mathbf{W} oldsymbol{\phi}_n))^{\!\!\! op} \, \mathbf{\Sigma}^{\!-1} \, (\mathbf{y}_n - \mathbf{g}(\mathbf{W} oldsymbol{\phi}_n)) ig
angle_{\!\! \widetilde{q}_{\mathbf{W}}} \, ,$ (10)

which we approximate using:

 $\mathbf{g}(\mathbf{W}\boldsymbol{\phi}_n) \approx \mathbf{A}_n \mathbf{W}\boldsymbol{\phi}_n + \mathbf{b}_n.$

(11)

(3)

(4)

- The objective factorizes over the data \rightarrow parallel or stochastic gradient algorithms easily applicable.
- Methods: how to linearize (set $\mathbf{A}_n, \mathbf{b}_n$)? \rightarrow EKS VS. UKS

 \rightarrow Similar performance to recently developed inducingpoint approximations.

SEISMIC INVERSION:

Random Kitchen Sinks

To achieve scalability, we use Random Kitchen Sinks (RKS, [2]) approximations to the kernel: • Exploit Fourier duality of covariance function of stationary process and its spectral density:

(2)

$$k(\boldsymbol{\tau}) = \int S(\mathbf{s}) e^{2\pi i \mathbf{s}^T \boldsymbol{\tau}} d\mathbf{s} \longleftrightarrow S(\mathbf{s}) = \int k(\boldsymbol{\tau}) e^{-2\pi i \mathbf{s}^T \boldsymbol{\tau}} d\boldsymbol{\tau}.$$

• Approximate the above kernel by explicitly constructing "suitable" random features and (Monte Carlo) averaging over samples from S(s):

$$k(\mathbf{x} - \mathbf{x}') = k(\boldsymbol{\tau}) \approx \frac{1}{D} \sum_{i=1}^{D} \phi_i(\mathbf{x}) \phi_i(\mathbf{x}'),$$

• For example, $[\phi_i(\mathbf{x}), \phi_{D+i}(\mathbf{x})] = \frac{1}{\sqrt{D}} [\cos(2\pi \mathbf{s}_i^T \mathbf{x}), \sin(2\pi \mathbf{s}_i^T \mathbf{x})]$ with $\mathbf{s}_i \sim \mathcal{N}(\mathbf{s}_i | \mathbf{0}, \sigma_{\phi}^2 \mathbf{I}_d)$, for i = 1 $1, \ldots, D$, converges in expectation to the (isotropic) squared exponential kernel.

References

- [1] D. M. Steinberg and E. V. Bonilla, "Extended and unscented Gaussian processes," in NIPS, 2014.
- A. Rahimi and B. Recht, "Random features for large-scale kernel machines," in NIPS, 2008.
- [3] J. Hensman, A. Matthews, and Z. Ghahramani, "Scalable variational Gaussian process classification," in AISTATS, 2015.
- [4] A. Dezfouli and E. V. Bonilla, "Scalable inference for Gaussian process models with black-box likelihoods," in NIPS, 2015.