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Gaussian Process Models
We consider models of the form y = g(f) + ε,
where f is drawn from a Gaussian process (gp):

• Standard supervised learning settings

• Inversion problems

Key challenges:

1. Scalability on the number observations

2. Muti-task settings

3. Nonlinear likelihoods g(f) + ε

Our solution considers:

• Random feature approximations to the co-
variance function (1);

• Affine transformations of latent processes (2);
and

• Local and adaptive linearizations (3);

all within a single variational inference frame-
work.

Multi-output Setting
We consider the supervised learning problem:

• Data: {xn,yn}
N
n=1, described compactly as

{X,Y}, where X ∈ RN×d and Y ∈ RN×P

• Prior: Q latent functions {fq} drawn from in-
dependent gp priors with covariance kq(⋅, ⋅):

p(F) =

Q

∏
q=1
N(f⋅q;0,Kq) (1)

• Non-linear forward model: g ∶ RQ → RP and
likelihood:

p(Y∣F) =
N

∏
n=1

p(yn∣g(fn⋅)), (2)

Goal: Probabilistic predictions and posterior es-
timation p(F∣Y)

Extended and Unscented GPs
The Extended and Unscented Gaussian pro-
cesses (ugp, egp; [1]) deal with nonlinear g(⋅):
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egp — Taylor expansion ugp — stat. linearization

, Approximation is local and adaptive

/ Single output/task, Q = 1

/ Non-scalable inference, O(N3) in time

Random Kitchen Sinks
To achieve scalability, we use Random Kitchen Sinks (rks, [2]) approximations to the kernel:

• Exploit Fourier duality of covariance function of stationary process and its spectral density:

k(τ ) = ∫ S(s)e2πis
T τds←→ S(s) = ∫ k(τ )e−2πis

T τdτ . (3)

• Approximate the above kernel by explicitly constructing “suitable” random features and (Monte
Carlo) averaging over samples from S(s):

k(x − x′) = k(τ ) ≈
1

D

D

∑
i=1
φi(x)φi(x

′
) , (4)

• For example, [φi(x) , φD+i(x)] = 1√
D
[cos(2πsTi x), sin(2πsTi x)] with si ∼ N(si∣0, σ

2
φId), for i =

1, . . . ,D, converges in expectation to the (isotropic) squared exponential kernel.

Approximate Model
Using rks bases such that k(xi,xj) =

E[φ(xi)
⊺
φ(xj)], we approximate our gp models

with:

p(W) =

Q

∏
q=1
N(wq ∣0, ω

2
qID) , (5)

p(Y∣W) =
N

∏
n=1
N(yn∣g(Wφn) ,Σ) , where (6)

• φn
def
= φ(xn) is the D-dimensional vector of

features corresponding to datapoint n;

• wq ∈ RD; W ∈ RQ×D; ω2
q is the prior variance

over the weights; and

• Σ = diag([σ2
1 , . . . , σ

2
P ]) is the noise variance.

Note that, effectively, we are making fq = Φwq,

with Φ
def
= φ(X) being the N ×D matrix of fea-

tures.

Posterior Inference
To deal with the nonlinear likelihood in Eq. (6),
we use variational inference with the approxi-
mate posterior:

q̃W
def
= q̃(W) =

Q

∏
q=1
N(wq ∣mq,Cq) , (7)

thereby yielding the posterior latent tasks,

q̃(F) =

Q

∏
q=1
N(f⋅q ∣Φmq,ΦCqΦ

T
) . (8)

Variational Objective: The variational log-
evidence lower bound is,

L = ⟨log p(Y∣W)⟩q̃W −KL[q̃(W)∥p(W)] . (9)

While the KL term is straightforward, the log
likelihood term involves an expectation of a non-
linear function:

⟨(yn − g(Wφn))
⊺
Σ-1

(yn − g(Wφn))⟩q̃W
,

(10)
which we approximate using:

g(Wφn) ≈ AnWφn + bn. (11)

• The objective factorizes over the data → par-
allel or stochastic gradient algorithms easily
applicable.

• Methods: how to linearize (set An, bn)?
→ eks vs. uks

Extended Kitchen Sinks
eks uses a first-order Taylor series,

g(Wφn) ≈ g(Mφn) + Jn (W −M)φn, (12)

where Jn =
∂g(fn⋅)
∂fn⋅

∣
fn⋅=Mφn

, obtaining:

An = Jn and bn = g(Mφn) − JnMφn. (13)

Unscented Kitchen Sinks
uks estimates the linearization parameters us-
ing deterministic samples given by the unscented
transform:

1. Exploit the structure from the marginal pos-
terior q̃(fn⋅) = N(fn⋅∣µn,En)

2. Define 2Q + 1 so-called sigma-points Fi,n, la-
bels Yi,n = g(Fi,n) and weights ui

3. Solve the weighted linear least squares prob-
lems with inputs, outputs, and weights
{Fi,n,Yi,n, ui}:

bn = ȳn −AnMφn and An = ΓnE-1
n , (14)

where ȳn and Γn are the sufficient statistics.

uks is truly a ‘black-box’ method

Experiments
Synthetic inversion problems:
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→ eks and uks perform similarly to original egp and ugp

and are competitive with the state-of-the-art (not shown)

Odd digits vs even digits on mnist:

NLP Error Rate
D = 1000 D = 2000 D = 1000 D = 2000

eks 0.129 0.088 0.043 0.026
uks 0.129 0.088 0.043 0.026
[3] 0.069 0.022
[4] 0.068 0.022

→ Similar performance to recently developed inducing-

point approximations.

Seismic inversion:

0 1 2 3 4 5

Sensor location (m)
×10

4

-3000

-2000

-1000

0

H
e
ig

h
t 
(m

)

Depth of boundaries

0 1 2 3 4 5

Sensor location (m)
×10

4

1500

2000

2500

3000

3500

4000

4500

V
e
lo

c
it
y
 (

m
/s

)

Velocity of layers

→ Similar solution to long-running mcmc simulation.
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