Extended and Unscented Kitchen Sinks
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(zaussian Process Models

We consider models of the form y = g(f) + €,
where f is drawn from a Gaussian process (GP):

e Standard supervised learning settings
e Inversion problems

Key challenges:

1. Scalability on the number observations
2. Muti-task settings
3. Nonlinear likelihoods g(f) + €

Our solution considers:

¢ Random feature approximations to the co-
variance function (1);

e Affine transformations of latent processes (2);
and

e Local and adaptive linearizations (3);

all within a single variational inference frame-
work.

Multi-output Setting

We consider the Supervised learning problem:

e Data: {x,,y.}._,, described compactly as
{X,Y}, where X e RV*? and Y e RV*F

e Prior: () latent functions { f,} drawn from in-
dependent GP priors with covariance kg(:,-):

Q
p(F) = lj[lN(fq;O,Kq) (1)

e Non-linear forward model: g:R? - R and
likelihood:

p(Y[F) = QP(Yn‘g(fn-))v (2)

(Goal: Probabilistic predictions and posterior es-
timation p(F|Y)

Extended and Unscented GPs

The Extended and Unscented (Gaussian pro-
cesses (UGP, EGP; [1]) deal with nonlinear g(-):

y =9(f)
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UGP — stat. linearization
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EGP — Taylor expansion

® Approximation is local and adaptive
® Single output /task, Q) =1
& Non-scalable inference, O(N?) in time

Random Kitchen Sinks

Approximate Model

Using RKS bases such that £&(x;,x;) =

[o(x;)" ¢(x;)], we approximate our GP models
with:

D), (5)

Q
p(W) = 1:[1N (
p(Y|W) = QN(yn\g(W%)»E)» where (6)

e ¢ = ¢(x,) is the D-dimensional vector of
features corresponding to datapoint n;

e w, e RY; W e RO, ()2

- 18 the prior variance
over the weights; and

o > = dlag([al, . ,0%]) is the noise variance.

Note that, effectively, we are making f, = ®w,,

with @ = ¢(X) being the N x D matrix of fea-
tures.

Posterior Inference

To deal with the nonlinear likelihood in Eq. (6),
we use variational inference with the approxi-
mate posterior:

Q
qw = Q(W) = l_IlN(Wq‘mqa Cq) : (7)
4=

thereby yielding the posterior latent tasks,
- - T
i(F)=]]N(f,|®m,, ®C, 2 ).  (8)
qg=1

VARIATIONAL OBJECTIVE: The variational log-
evidence lower bound is,

w ~ KLG(W) [[p(W)]. (9)

While the KL term is straightforward, the log
likelihood term involves an expectation of a non-
linear function:

((yn ~8(W$,)) = (va - 8(We,)),
(10)

L= <1OgP(Y|W)>g

which we approximate using:

g(Wo,)~A, Wo, +b,. (11)
e The objective factorizes over the data — par-
allel or stochastic gradient algorithms easily

applicable.

e Methods: how to linearize (set A,,, b,)?
— EKS VS. UKS

To achieve scalability, we use Random Kitchen Sinks (RKS, [2]) approximations to the kernel:

e Exploit Fourier duality of covariance function of stationary process and its spectral density:

k() = f S(s)e?™ T ds s S(s) = f k(r)e 2™ T gr (3)

e Approximate the above kernel by explicitly constructing “suitable” random features and (Monte

Carlo) averaging over samples from S(s):

k(x-x')=k(71) ~

e For example, [¢;(X),¢dp1i(x)] =

[COS(Q’]TS x),sin(27s! x)] with s; ~ N(s;

5360096, ()

), for ¢ =

1,...,D, converges in expectation to the (isotropic) squared exponential kernel.

Extended Kitchen Sinks

EKS uses a first-order Taylor series,

g(Wo,,) ~g(Me,) +J, (W-M)e,, (12)
£,
where J,, = I8t , Obtaining:
of,. f,.=Mo,
A,=J,and b, =g(Mo¢,,)-J,Mo¢,. (13)

Unscented Kitchen Sinks

UKS estimates the linearization parameters us-
ing deterministic samples given by the unscented
transform:

1. Exploit the structure from the marginal pos-
terior G(£,.) = (£, |12, Ex)

2. Define 2Q) + 1 so-called sigma-points F; ,, la-
bels V; n = g(Fi.n) and weights u;

3. Solve the weighted linear least squares prob-
lems with inputs, outputs, and weights

{FinsVim, Wi }:
b, =v¥,-A,M¢_ and A, =T, E' (14)

where y,, and I'',, are the sufficient statistics.

UKS 18 truly a ‘black-box’ method

Experiments

SYNTHETIC INVERSION PROBLEMS:
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— EKS and UKS perform similarly to original EGP and UGP

and are competitive with the state-of-the-art (not shown)

ODD DIGITS VS EVEN DIGITS ON MNIST:

NLP Error Rate
D =1000 D =2000 D =1000 D = 2000
EKS 0.129 0.088 0.043 0.026
UKS 0.129 0.088 0.043 0.026
3] 0.069 0.022
4] 0.068 0.022

— Similar performance to recently developed inducing-

point approximations.

SEISMIC INVERSION:
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— Similar solution to long-running MCMC simulation.
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